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Generalized hydrodynamic equations for nematic liquid crystals
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We present a formulation of the nematic liquid crystal hydrodynamics based on the tensor order parameter,
with the spatial variations of both the director and the scalaraxial and biaxigl order parameters explicitly
taken into account. New length and time scales are shown to arise that can be important for the switching
dynamics of thin cells subject to large external fields. The Ericksen-Leslie theory is shown to be a special limit
of our formulation.[S1063-651X98)13712-1

PACS numbegs): 61.30—v, 83.70.Jr

. INTRODUCTION the tensor order parametén Recently, it has been observed
that the polyimide-coated substrates can induce a boundary

Nematic liquid crystals(NLC'’s) are at the same time layer of strong biaxial character, describable only through
similar and different from ordinary fluids. They are similar the tensor order parametg]. In addition, the prediction of
because both have no translational long-range order for thie bulk orientational order through the LdG theory shows
molecules. In addition, nematic liquid crystals possess ng@ood agreement with the experiment. The use of a tensor
static shear modulus and can therefore flow like a fluidorder parameter is therefore not only necessary, but also suf-
However, NLC’s have long-range orientational order, whichficiently accurate.
gives rise to many of the special optical properties which are The purpose of this work is to explore the role of LCO, as
the basis of liquid crystal displays. The existence of the ori-expressed by the tensor order paraméﬁem hydrodynamic
entational order means that locally, the alignment of theprocesses. We adopt the general framework developed by
NLC's is characterized by a directar, the local axis of Ericksen and Leslie, meanwhile applying the LdG free en-
uniaxial orientational order. Based on symmetry and elasti€rgy to present a hydrodynamics formulation that can be
energy considerations, a continuum elastic theory of NLC'¢!sed to study the dynamic behavior. We identify new length
has been deve|0ped by Osd:e_ﬂl Zocher[Z], and Franl{g]_ and time scales associated with the Spatlally and temporally
The incorporation of the orientational degree of freedom invarying LCO in generic hydrodynamic processes. lllustrative
the hydrodynamics of NLC’s was subsequently developed b\ylumerlcal results are given. It is shown that the EL theory

Ericksen4] and Leslig5]. They formulated the general con- corresponds.to the long-range, slow-motion limit of the gen-
servation laws of fluid mechanics for NLC’s and derived theeral formulation. We note that the EL theory has been rewrit-
ten in the tensorial context but wit(r) treated as a constant

hydrodynamic equations governing the time evolution of the[14 15. Our formulation should be distinguished from such

director fieldn(r) and the velocity field/(r). The Ericksen- treatment since we take into account the variations of both
Leslie (EL) theory has been widely and successfully used in

. : : : .S(r) and n(r), as well as the coupling between the two

[?ijrélzir,"ng various dynamic properties of thermotroplcand/or the biaxial order.
In addition to the directon, which gives the local axis of

uniaxial symmetry, the NLC’s are also characterized by the Il. STATEMENT OF RESULTS
degree of local orientational orde&(r). By noticing that
NLC's do not distinguish the head and tail of the direator
and by taking into account the degree of orientational order 1 2 5
S(r), de Genne$6] has shown that the order parameter of Frac=2(aQjj+L1Qjj k*L2Qij jQik k)
NLC's is a second rank traceless symmetric terﬁok/vhile T )
the continuum elastic theory based on the director descrip- + 5 L16x Qi 9jQu— BQi; Qi Qi+ Q%)%
tion of NLC is sufficient for many field-induced liquid crys-
tal behaviors, it has been shown that the consideration of (1)
substrate-nematic interaction and/or interaction with strong
electric or magnetic field would require the more completeHerea, L, L,, B, v, andP are phenomenological material
theoretical framework based on the tensor order parameteconstants.e;;, is the Levi-Civita symbol, the indices j,k
The Landau—de GenndkdG) [7] theory has been instru- run from 1 to 3, summation over repeated indices is implied,
mental in explaining and predicting various static phenom-and the comma in the subscript means derivative with re-
ena, such as surface wettif@]l, surface-induced bulk align- spect to the spatial coordinate that follows. We consider in-
ment[9,10], and defect core structuf@1-13, all involving  compressible NLC's obeying,v,=0. The central results of
the fast spatial variations of liquid crystalline ordeCO), a  this work are as follows. The hydrodynamic equations for
term used here to denote bathand S as expressed through the flow and LCO are

The LdG free energy density is given by]

1063-651X/98/58)/747511)/$15.00 PRE 58 7475 © 1998 The American Physical Society



7476

-
pd—tl=(9j(—p5ji+0?i+0'jfi+(rj'i), 2

3

Here p is the NLC densityp denotes the pressuré,is the
moment of inertial density, usually negligible,and\, are
the Lagrange multipliers determined by requiringﬁ’ﬁrO
and Q;;=Qj; , while d/dt is the total time derivativey/Jt
+v-V. The distortion strese and elastic molecular field
are determined by the LdG free energy:

JQij =hij+hij— N & — €ijchk,

IFLdc
Uji__maiQaﬁ’ 4
dFLdG JdFLdG
hyj=— +a . 5
. Qj; k&(&inj) ®

In the presence of electric fiel, there is a field-induced
free energy density;= — (1/87)D- E, whereD= €E is the

electric displacement field, ane=2eMQ+ €l is the dielec-
tric tensor withe' being the maximum dielectric anisotropy

ande=Tr €/3. Here the sign in- (1/8m)D- E means thatF;
takes the electric fiel¢or potential as thermodynamical co-
ordinate. The field-induced stresd is given by

1
UJi_EDjEi_SW

ﬁEMV
DkEk_pE,uEV ap 5“ ) (6)
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the presence of applied voltagk the field-induced correla-
tion length is given bytg~ 47K/ e,E? (€, is the dielectric
anisotropy andE=V/d is the field strengthand the associ-
ated time scale becomeg~ ngé/K. In our formulation, the
EL theory is recovered whe<ée<d andr<me<rg, i.e.,

in the limit of slow spatial and temporal variations. In fact,
the EL theory can be obtained from our formulation when
Qjj is written as

Qij(r)=So[3ni(r)n;(r)—&;1/2, C)

i.e., the orientational order is treated as a frozen constant.
However, that means the dynamic behavior Sff), and
those involving the coupled evolution 8{r) andn(r), can-

not be described within the EL theory.

We have carried out numerical calculation for a cell of
d~1 wm filled by a NLC of largee,~ 15, with homoge-
neous substrate alignment conditions. We first minimize the
LdG free energy to obtain the equilibrium NLC configura-
tion under a large holding voltage-20 V). Biaxial order-
ing in the boundary layer is noted. The hydrodynamic equa-
tions (2) and(3) are then solved to show the backflow effect
[16,17 after the voltage is switched off. It is seen that the
large elastic energy stored in the biaxial boundary layers re-
sults in a very fast orientational relaxation close to the NLC-
substrate interfaces. Because of the coupling between the
translational and orientational motions, a large flow field is
induced. The length and time scaldsand r are clearly
manifest in the resulting dynamic behavior.

The paper is organized as follows. In Sec. lll, the deriva-
tion of the hydrodynamics equations, based on the tensor

andh is reexpressed by adding the field-induced moleculagrger parameter, is presented. In Sec. IV, the new length and

field (1/12m) eg‘EiEj to the right-hand sideRHS) of Eq. (5).
The viscous stresg’ and viscous molecular fielh’ are
given by

0op=B1QapQuAurt BaAupt BsQuuA st BeQpuAua

+% ﬂZNaﬁ_MlQapNuB—i_MlQBﬂNMav (7)

®)

where 81, Ba, Bs, Bs, 11, and u, are viscosity coeffi-
cients withBe— Bs= 2, A =3(djvi+div;) is the symmet-
ric part of the velocity gradient tensor, whil§j; =dQy;; /dt

+Uk07iji_EjaﬁwaQBi_eia,Bwan,B is the time rate of

—h,p= %MzAaﬁ+ 1N og

change ofQ;; with respect to the background fluid angular

velocity m=3VXv.

time scales of our formulation are discussed, and the EL
theory is obtained as a limit of our equations. In Sec. V, the
numerical results are given to illustrate the hydrodynamic
effects of LCO in thin cells subject to strong fields. We con-
clude in Sec. VI with a discussion of implications for future
work.

IIl. EQUATIONS OF HYDRODYNAMICS

In this section we derive the hydrodynamic equations for
NLC’s by using the LdG free energy to define the nondissi-
pative molecular field and stress. The viscous molecular field
and stress are then introduced through the consideration of
entropy production in a dissipative flowing nematic. The two
independent fluxes for friction are identified by using the
conservation of angular momentum, and explicit expressions

There are intrinsic length and time scales that emergey, the viscous forces are obtained, leading directly to Egs.

from the LdG free energy. We choose the length scale
=\LC/B?, where B=3p/4, C=9y/4, and L=3L,/4

(2) and(3). Field-induced effects are included in the deriva-
tion.

+L,/2, as the characterisitic length unit to describe the spa-

tial variations ofQ;; . Correspondingly, the time scale is

= pA?/L where 7 is some representative viscosity coeffi-

cient. For most NLC’sA~50 A and7~0.1 us. In addi-

A. Free energy and hydrostatics

The LdG free energ¥, qo=J FLqcdr is a functional of

tion to these intrinsic scales, there are also the length an@ij(r) andQ;; «(r). The NLC can be “virtually” distorted
time scales that arise from external imposed parameters, suély €ither a rotation of molecular alignmentQ;;(r)

as those in the EL theory. Consider a liquid crystal cell of—Qjj(r), or a displacement while keeping its orientation
thicknessd with parallel, uniform substrates imposing fixed fixed: r—r’'=r+u(r), Qij(r)HQi’j(r’)=Qij(r). The elas-

surface alignment conditions. The EL theory givkas the
length scale andro~ 7d%/K as the time scale, wherk

tic molecular fieldh, as defined by Eq(5), results directly
from the virtual orientational distortion. The equilibrium

~L$S? is a Frank elastic constant in the continuum theory. Instate is given by the order parameter configuration that mini-
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mizes the free energy functionfitlr 7 45. As Q only has

five independent co?nyponents, the oré?i?nal canfiguryation sat- f dr{fiik("?k+"Jfk)+&v[fiik(QmHvkﬁanmk)]}
isfies hj;=N\ &+ €ijx\, Where the four\ and N, are

Lagrange multipliers due to the constraints Q0 and :f dr{ej(Q; N+ Quih )},

Qij=Qji - On the other hand, the distortion strasSis de-

fined by 6F 4= fa d;u;dr. Here the change in free en- ¢4 \which we obtain

ergy is caused by a change @ y: akQ,J Qjj=

—3,Qii dkU,, and SF | 4¢ is given by
1] j E”erdS’u((Tik"'O'Lk)"—f eijk(QjMdSVHVk,u

5FLdG_f drﬂQij,k( 34QijUq), +Q,dS,IT, )

from which we obtain Eq(4). In the presence of an electric _ _ d f . ,

field E, the total free energy density becomés F 4 _j €9t 00 +(Qjuiu Qi ar

+ F;, where the field-induced energy densfy is given by (12)

— (1/8m) €;EE;. Accordingly, the molecular field be-

comes by using €k (o T U,k) €N (ot ol)]
e — €l 0 (0' W o «k)- HeredS s the vectorial surface ele-

hji=Aji+ 0,015+ 75— 12 EEi. (100 menton the ‘boundary. It is clearly seen that the body torques
are externally supplied by the surface torques. In @9),

where A j; = adeG/aQJ, and HM,—a}'LdG/aQ“ he since the appearance o{r‘{+a ) is always in conjuction

field- |nduced stresg', defined bysF;=o! ii9u;, is conse- with €;;, , which is totally antlsymmetrlc it fO||OWS that the

guently given by Eq(6) [18]. result will not be altered by replacmg“ +0' by 0' f

The LdG free energy is invariant under a rigid rotation of —pd;; , smce p5II is symmetric. However in equnlbrlum
the nematic. That isgF 4c=0 if Ui(r)=€;Kd0;ry, 6Q; 3;(—pJji +a +0'|) 0 and hj;=\d;;+ €\, therefore
= €090 ,Qpj T €,,590 Qi 5, Whered® is a small rotation the integrant in the RHS of Edq12) vanishes. That is, the
angle.SF | 4¢ can be expressed as body torque equal to zero, consistent with the requirement of
angular momentum conservation.

60 ,L,=0.
As 60 , is arbitrary, we have B. Dissipative dynamics and entropy source
M 1
With o9, o', andh defined from the free energy expres-
L :j dr{e; ot — A (€, Qui+ € Qik) sion, we are ready to write down the dynamic equations by
. e I T introducing the viscous stresg and the viscous molecular
+1T 5 (€], Qi+ €,k Qjkr)} =0 (12) field h’ which are responsible for entropy production in

flowing nematics. Knowledge of the viscous stress means the
which essentially expresses angular momentum conservatigtynamical equation, expressed as conservation of linear mo-
of the system, and shows thaf andh are not independent. mentum, may be written as
Equation(11) can also take the form q

; pvidl’:fd% Tji » (13
Jdr{eijka-jk+é’v[eijk(Qj,quk,u'i_Q,u,ij,uk)]}
where the total stressj;=—pdj;+ of; + o}, +o7j;. The last
= | dr{eil Qi (Axut I i)+ Qui(A et 3,01, 00 1} term,oj; , represents the viscous stress tensor, which is to be
f R . pE . derived. The time evolution of LCO is governed by the an-
em gular momentum equation
a
j dr[fljk(ij.hk,u_"Q,ujh,uk)_Eeijk(Qj,uEkEp. q
dtf ‘]EIJK(Q]MQkM+QMjQuk)dr
~ [ 1@ i)+ Qo a1, (1
in which we replaceA ,;+d,1I1,,5 by h,z— € E E /127
using Eq. (10. This leads to the term

m .
Jdr{~(eal12m) € (Qj,E(E, + QuELEQ} explicitly de- o trce with respect to the rotational degree of freedom,
&endmgﬁor\iln the RHS of the above equation. Then USING 4150 to be derived. The differential equations corresponding
e=5e1Q+el for the dielectric tensor, to Egs.(13) and(14) are Egs.(2) and(3) stated in Sec. Il.
—(e3/127) € (Q; LEXE , +QMEMEk) is found to be equal Equation(3) is actually the tensorial analogue of the vecto-
to —(1/4m)e€;D;Ey, wh|ch is simply related too’ by rial Oseen equatiofsee Eq(A4) in Appendix A] of the EL

— (1/47) €D E= E”ko]fk Thus, Eq.(11) can be ex- theory. That relation will be dicussed in Sec. IV and Appen-
pressed as dix B.

where the viscous molecular fiel is introduced as a fric-
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. Th(_a entropy production in an isothe_rmal flowing nematic 01 5= B1QapQuiA Lt Bahas+ 1(Bs+ Be)(Quuh,p
is defined by the thermodynamic relation .
+QB,uA,ua)+ EIU'ZNaB ’ (20)

F=W+Q-TS=W-T3, 1
. _h:‘(ﬁzilu'éAaB—’—MlNaB! (21)
whereS denotes entropy, ant, denotes the dissipative part

of entropy production. Written out explicitly, we have whereBy, B, 3(Bs+ Be), a2, i3, andu, are independent
viscosity coefficients. According to the Onsager theorem

[19], uo= ;. Here the expressions fer,; and—h, ; keep
the lowest-order terms iQ;; so as to avoid the definition of
a large number of viscosity coefficients. They can be related
: to the corresponding quantities in the EL formulation. This is
+ | dS,(II + , 15 i . .
f WHuapQapt 0,0) (19 elaborated in Sec. IV and Appendix B. Using,,= o5

S d 1.2 1102
T2=— | (2pV+2IQp+ Fract F1)

N . . +3 o Eq.1 ino! i Eq.
where the _flrst integral is the decreasing rate of the total fre%)z' %?tﬁefﬁjtagleszlr;git equ)rg)s,s\,liv Oengt:)tgg%fdizf];let?] g );tr(gsses
energy ¢-F) and the second integral is the rate of externalang molecular fields, the derivation of the nematodynamics
work (W) done by the surface forces. Substituting the dy-equations is thus complete.

namic equation$2) and(3) into Eq. (15) yields

] . IV. DISCUSSION
T== f driojiA;i —h;iQjit, (16) A. Intrinsic length and time scales

The short-range, fast variations of LCO can be induced by
surface interaction potentials, strong fields, and/or tight geo-
Imetric confinements. The characteristic distances associated

momentum conservation. To make this clear, we note tha\f\"th such variations are determined by the NLCs' elastic

correlation lengths, which can be defined frdinyg . In Sec.
;hse rate of change of angular momentum may be expresseﬁ?we defineA as the characteristic length unit to describe the

spatial variations o®;; . Since the inertial effects are usually
negligible, the dynamic equatiori®) and (3) are essentially
J GijkrdeMU;Lk+J €ijk(QajdS,IT okt Qo dS,IT k) the balance equations between elastic forces and viscous
forces, and the intrinsic time scale corresponding to the
d ) . NLCs' length scaleA is determined by such viscoelastic
:af {eijkprjvit €jkd(QuiQurt QjuQu}dr- (17)  effects. Sinceh,09~L/A2 and h’, o’ ~ /7, setting L/A2
=yl 7 leads tor~ yA?/L, where  denotes some typical
Using Egs.(2) and(3), we may express the RHS of Ed.7)  viscosity coefficient. Consider the NLC confined in a cell of
as thicknessd with applied voltageV. The EL theory defines
two other sets of length and time scaléSor a brief review
of the EL theory, see Appendix AThe Frank free energy
density 7, given by Eq.(Al) in Appendix A, leads to a
correlation length- [20], and the cell thicknesd becomes
We thus see that the sum of body torques, givervpy,i  the only length scale. According to the EL theory, the corre-
andh+h’, equals the sum of surfacc? torciues. However, thesponding time scaley is determined by the balance between
sum of body torques exe_rte_d b’_)ﬁ(o#ﬁom) and h must g.09~K/d? andg’, o' ~ nl7o. That meansry~ 7d?/K. In
equal to the sum of nondissipative surface torques, as stat¢e presence of electric field applied perpendicular to the

whereA;; has been defined previously in relation to EG.
and (8). In Eqg. (16), while we have explicitly identifiedr’
andh’, yet the two quantities are correlated through angula

f eijk{rjaﬂaﬂk-f-[QjM(hkﬂ-f- h((,u)—’_Q;LJ(h,uk—’— h’;k)]}dr

by Eq.(12). Subtracting Eq(12) from (17), we obtain substrates,F+ and the field-induced free energy density
by , , , — (1/8m) e4(n- E)? together lead to a finite correlation length
€ijk (10 ) = €T 90Tt €k ( QP t Qi#hkﬂ)’(m) &~ \JAmKd? e,V? whereV is the applied voltage. The cor-

responding time scaleg, determined by the balance be-

which simply means that the viscous body torques frontweeng,rrd~K/§§ andg’,o' ~ 7/ g, is thus~ ngé/K.
d,0,; and h' are supplied by the surface torque from We emphasize that,7, and e, 7e are determined by the
dsﬂgl’ﬂ_ Substituting Eq(18) into (16), we obtain the en- cell thickness and applied field while the new length and
tropy production expression time scales\ andr are intrinsic parameters that can only be
obtained by taking into account the elastic correlation of
. s , LCO. With L~10"° dyn, B~0.5 J/cni, C~1.0 J/cn,
TE:jdr{UJi Aji —hjiNit, 19 and 7~0.1 p (for 5CB), we have A~50 A and r
~0.1 us. For largee,~15 [4-n-pentyl-4-cyanobiphenyl
where oj’is is the symmetric part ofrj’i. The two sets of (5CB) has €,=~13], V~20 V and d~1 um, the field-
independent fluxed; and.\j; are thus identified as defined induced correlation lengtéiz~100 A, which is comparable
previously in relation to Eqs(7) and (8), and the laws of to A. Such high voltages can induce the spatial variations as
friction can be explicitly expressed as well as the time evolutions of LCO witlh and = as the
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relevant length and time scales. However, for large thicknesasing J\/ S(Sn n—8.:)/2+3S(nN;+n:N;)/2 and Eq.
d, low voltageV, and small dielectric anisotrops,, A is (1) for he defmjmonj of b’ we obtain for Qi =
much smaller thaw and & . In that limit, theS(r) is effec- Q.h’ the equation I
tively a frozen degree of freedom that cannot be activated. </

Ij’

Consequently, the director field suffices for the description of U
time-evolving alignment state, and our formulation equations - " = i S+ uoninA;j . (24)
are reduced to the EL theory. This is shown below with more IS (S 2 4

details. ) )
From Eq.(24), it can be deduced that the slow spatial and

temporal variation oh effectively makes itself the only dy-

. iahtt ; lat he di namic variable out of the originafﬁ. To see this point, we
It is straightforward to reduce our formulation to the di- write Eq. (24) in the dimensionless form

rector description by taking the limit expressed by E9).

B. Adiabatic S(r,t) and the Ericksen-Leslie theory

Here we focus on the role db in such limit. A detailed J 3 d 3
comparison can be found in Appendix B. { — __+§k_] (Fo+ Frg) = =1 —S+ —uoniN; A”
We first restrict our discussion to the uniaxial case. From S A(S) 2" dt 4

Qi;=S(3nin;— 8)/2, FL4c is reduced to (25)

Here Fs+ Fos=F4c/ (B*/C) is the dimensionless free en-
ergy density,Sz_S/(B/C) is the scaled orientational order,

m1=pm1lm and uo=u,/n are the dimensionless viscosity
coefficients, respectively, and and r are chosen as the

Iength and time units such thrti?t( Ady, d/dt—r(d/dt)
andA J—'S and ]-'ns are given by

FYio=a(T-T*)SP—BS+CSH 3(L,+ L L,)[VS]?
+ 3 L[n-VS]*+ 3L, V-n][n-VS]

+ 3L,9NXVXn]-VS+ 3 S{(Ly+ 2 L,y)[V-n]?

+L4[n-VXn]2+(Ly+ 3 Ly)[nXVXn]&, (22
Fe= (ﬂ%>§2—§*+§4+%<f1+%fz>[v_sa2+%f2[n~v_$2,

where a(T—T*)=3a/4, T* is the supercooling tempera- 26)

ture,B=3p/4, andC=9vy/4. Here the helical term is omit-
ted for simplicity. In cases=S; with Sy being the uniaxial
order parameter that minimizes(T—T*)S*+BS*+CS,
the free energy is effectively a functional ofr) only, rep-
resented by the last three terms. The splay, twist, and bend
distortions ofn(r) are expressed as in the Frank theory. The
Frank elastic constants, given B¢, =32S*(L;+31L,), K,
=95°L,, andK;=3S?(L,+3L,), are predicted to be pro-
portional toS? [21], which has been experimentally verified
by measuring the temperature dependenck;adnd S,

The EL theory ignores both the spatial and temporal de- 5
pendence oB(r). This corresponds to Eq9) in which the  tion temperaturd’,y given by T* +B%/4aC, L;=L,/L, and
uniaxial orientational order paramet8ris set equal td5,. L2—L /L. Fgis determined by the degree of orientational
To justify such an approximation, it is necessary to examineyrder S and its spatial variation, whiléF,,s comes from the
the equatiorQ;; (h;;+h;;) =0, obtained from Eq(3) by ne-  coupling betweem,n andS. Let |, denote the characteristic
glecting the inertial term. This is actually the molecular field distance over which the director variations take place. It fol-
balance equation for thg degree of freedom. To make this |oys thatV-n and Vxn are on the order ofA/l,,. The

clear, we first note from the definition ¢f; [Eq. (5)] that  gjow spatial variation ofn is defined to bel, >A thus
|V-n|,|Vxn|—0. As a consequenceF,s is negligible as
compared taFs. Now let 7, denote the time scale associated

with the dynamics oh and the flow. It follows thaKij is on

3  the order of7/7,. The slowness of time evolution means
7> 7, thusA;;—0. By neglecting?,s and A;; in Eq. (25),

In the RHS of this equation, the second term is negligiblewe obtain

compared with the first term if the characteristic distahce

and

Fas=3L2SV-n][n-VS]+ £L,S[nx Vxn]-VS
+ $(Ly+ L,)[V-n]2+ L [n-VXn]?

+(Ly+ 3Lo)[nxVxn]?}, 27

whereT = aC(T—T,y)/B? with the |sotrop|c -nematic transi-

e
Ka(9,S)|

2 d(Qj))

Flac
JS

Qijhij=S ) ak(nin;).

over which the director variations take place is much larger Jd — 9 _ 3 d_—
than A, the characteristic distance for the spatial variations — 4+ J——— Fo= =, —=S. (28)
b T s s TS 2"

of S An estimate of order of magnitude shows that in the
RHS of Eq.(23), the first terms is on the order bf A2 while

the second term is on the orderlofAl,,, with its ratio to the
first one beingA/l,,<1. Actually | ,.>A is just one of the

Thus the temporal variation Sis decoupled from the tem-
poral variation ofn. In addition, we note that the equilibrium

conditions for the EL theory to be recovered as we will seesolution ofSis given by the solution to the Euler-Lagrange

below. Then, by dropping th&(n;n;) term in Eq.(23) and

equation
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S L (29)
s “a(as)) S T

Thus Eq.(28) describes the temporal relaxation®fvhen it

is out of equilibrium. Moreover, since the response time

scaler for Sis much shorter than that for, the S(r/A,t)

solution may be approximately given by the instantaneous
optimal configuration, which minimizes the free energy

Jd(r/A) FLn(r/At)]+ fd(SIADU[Nn(r/A,t)], noted to
depend om explicitly. Here [dSU is the substrate-LC in-
teractign potential. Through time—laryirlg the optimal so-

lution S, thus obtained depends drexplicitly. That means
dS,/1t is on the order ofr/7,—0. Meanwhile,v in the
boundary layer is on the order &-d,v~A/7, and ng
~A~1 thus 7v-VS,~/7, also tends to vanish. With

eters 0;=Qu1, 02=Q2, 03=Q12, 0s=Qz3, and Qs
=Qj,, while f, andf, are the molecular fields conjugate to
gk - Explicit expressions for all the quantities in E§O) are
given in Appendix C. The seven coupled differential equa-
tions in Eq. (30) can be integrated to yield the solution
vi(z,t) andq(z,t) provided the initial configuration,(z,0)

is given. Due to the neglect of inertial terms(z,0) and
0x(z,0) are determined by, (z,0). To determine the initial
configuration, which is assumed to be in static equilibrium,
we use the condition of,=0, i.e.,

J J
— —+ 3 ——|(FLaet F1)=0.
( &qk 'an,i)( LdG f)

dS,/dt— 0 justified, the instantaneous optimal configurationDynamics is obtained by straightforward time integration

S,, satisfying EQ.(29) but subject to the time-varying

from the initial configuration.

configuration, is thus obtained as the approximate solution of The cell thicknessl used in our computation is 140 on
Eq. (28) for the boundary layer affected by the substrate-LCthe order of 0.5 micronse, is chosen to be 15, witl

intercation.

=20 ande, =5, typical for the LC’s of large dielectric an-

Based on the above discussion, it is readily seen that thisotropy. The voltage unit used here\ig= 47K /€4, on

degree of orientational orde® varying spatially in the

the order of the threshold voltage of the &dericksz transi-

boundary layer but uniform in the bulk, only adiabatically tion. ForK;~10"°® dyn ande,=15,V:~0.3 V, we calcu-

follows the slow temporal variation af. The flow field thus
induced is on the order ak/7,,, which is negligible com-
pared with then-induced fluid velocity~I,/7,. We con-

clude that in the regime ak<l,, and <7, the alignment
state can be descibed byalone, anch andv can be chosen

as the two dynamic variables. This constitutes the basis of

the EL theory, and,,, 7, may be identified withd,r, and/or
ée,7e. Through a more complete discussion basedpn
=3(3nin; = &;;)/2+ P(ljlj—mm;)/2, with ], m, andn being
the principal axes of), it can be shown in a similar way that
in the regime ofA<l|,, and 7<7,, n is effectively the only

dynamic variable fron©.

V. NUMERICAL RESULTS

late the temporally varying flow field in the cell right after a
high holding voltageV,, is switched off. The material con-
stants and boundary conditions are given in Appendix D.
Strong anchoring condition for the homogeneous alignment
at the two substrates is assumed. The pretilt angle is set to be
° and the substrates are arranged to have parallel surface
directors. The surface value db is fixed at S;=B(3
+/33)/8C at temperaturd =T,y—4(T,y—T*). According

to the EL theory, switching off/,, results in a fast rotation of

the directors close to the substrates as the large elastic dis-
tortion energy in the boundary layers is suddenly released
[16]. A large flow field is thus induced by the coupled evo-
lution of n andv. This is known as the dynamic backflow
effect. In particular, the EL theory gives-~ 7£2/K, (here

We have carried out numerical calculation for a thin cell €= ‘_”TKldz/faV_H) as the time scale of the relaxation pro-
subject to a high switching voltage in order to demonstrates€ss right aftel, is switched off.
the LCO hydrodynamic effects. The coordinate system is The calculation is performed fofy, ranging from 1¥¢ to
defined with thez axis being the substrate normal, and all 100V (for parameters suitable to 5CBg=0.25 V) . Note

guantities are functions of onlg andt. We focus on the
in-plane motions withv ;=0. The boundary condition is that
the velocity components; andv, must vanish at the sur-
facesz=0 andz=d (d is the cell thicknegsand the surface
order parameters are fixggtrong anchoring

With Q;;=Q;;(2) andE is in the z direction, we have
03,=03%,=0 andot,=,=0. Since the inertial terms are
negligible, we obtain

Ja0k=0, =12, (308
f=—f., k=1,2,3,4,5, (30b)

where f, are defined byf;=h;;—hgs, fo=hy—hgs, f3
:h12+ h21, f4:h23+ h23, andf5:h31+ h13, andfli are de'

that Ved=V &g, thus &z approximately ranges from M0
(V4=10Vg) to A (Vy=100VE). First we want to show that
our formulation does agree with the EL theory in the regime
of low voltages. This is achieved by examining the numeri-
cal results obtained fovy~ 10V . Letvq denote the time-
dependent velocity fields obtained from our generalized hy-
drodynamic equations angl denote that from the EL theory.
In Fig. 1, it is seen that the initialy andv, possess similar
spatial variation but differ appreciably in magnitude. How-
ever, the initial difference vanishes quicklyas approaches
Vv, in a very short relaxation time scate Subsequentlyyq
merges withv,, and undergoes futher relaxation with the time
scalere. As the initial difference between, andv,, lasts
only within a negligible time duration7< r¢), the two so-
lutions are thus equivalent and the EL theory is effectively

fined similarly. Here we select five independent order paramapplicable.
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' T ' 200 T — .

: . . 01 02 03 04 05
z/d z/d

FIG. 1. (a) Spatial and temporal variations of(z,t) after the FIG. 2. (a) Initial velocity fieldsv,(z,t=0) obtained from the
holding voltageV,=10V¢ is switched off att=0. The solid lines EL theory forV,=50V¢ (circles, 75V (squarel and 10 (dia-
represent the solution from the generalized formulation and thenonds. (b) Initial velocity fieldsv,(z,t=0) obtained from the gen-
open squares represent that from the EL theory. Both solutions areralized formulation folVy =50V (circles, 75V (squares and
obtained for the time duration fro=0 to 2X 10 °7,, with 7, 100V (diamonds$. Here the spatial dependencewof is only de-
=a,d?/K,. The time interval between each two adjacent solidpicted in the first half-space because of the symmetry relation
lines is 210 %7y. It is readily seen that the temporal variation v,(z,t)=—v,(d—zt).
depicted by the solid lines is fast and monotonic, exhibiting a de-
creasing|v,| magnitude everywhere. For the open squares, the
have similar spatial dependence but negligible temporal variatio
(b) Same aga) except forV,;=20V.

Yained within the EL theory. From Fig. 3, we see that for
V=50V (=13 V), the initial velocity increaséwith V)
is almost flat, in sharp contrast to that predicted by the EL
theory. This is due to the fact that the elastic distortion in the
For Vy, high enough so thae is comparable ta, quali-  boundary layers is no longer characterized by the spatially
tative differences emerge between our formulation and theotating director. Instead, it exhibits predominant biaxial or-
EL theory. First, we note that within the LdG theory, the
equilibrium LCO configurationmaintained by the holding 200 ‘ . S
voltageV,) possesses strong biaxial charactejdfis on the A ELtooy
order of A. With an initial state already beyond the director ¥ generalized formulation A
description, it is imperative to use the generalized hydrody-
namic equations to solve the time evolution problem. This is
further justified by considering the dynamic time scales.
Since ¢ is actually comparable to the intrinsic time scale
if ée~A, the dynamic relaxation involves the coupled evo-

lution of @ andv from the very beginning. This is indeed
confirmed by our numerical results. In Fig. 2, it is seen that
the initial vq andv,, still possess similar spatial variation but

again are appreciably different in their magnitudes. But now 0 20 40 60 80 100
the difference persists ag, andv, evolve, respectively, with V./V

the time scales and rz, which are of the same order. In
addition, sinced,v in the central part of the cell is crucial in FIG. 3. Maximum initial velocity depicted as a function of the
determining the relaxational behavior of the alignment statgwitched offVy,. Solid triangles represent the solutions from the

[16,17), the whole dynamic process predicted from our hy-EL theory and the open triangles represent those from the general-
drodynamic equations differs qualitatively from that ob- ized formulation.
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8 the right-handed helix. For incompressible nematics, the ba-
150G oooo 8888 sic equations of the EL theory read
99889" 555
’:o-zoo C . ’ : div; =0, (A2)
D u
5250 ® ,’ 1 do;
o u pEZz?j(—p& +0' +cr +0'J,) (A3)
~ *
> -300 l’ .
©
-350 | 1 Idzlﬂ . Ad)
> d 2 gl gl | ’

-4(980000 0.00005 0.00010 0.00015 0.00020 - o~
t/r0 wherep is the density constanp is the pressureg®, o,
and o’ are the stress tensors induced by elastic distortions,
FIG. 4. Time variation of the central velocity gradiea(z  external electric and magnetic field, and viscosity effects,
=d/2}t) plotted as a function of timeV; =50V (circles, 75V  respectively/ is the inertial momentum density that is usu-
(squarey and 10Wr (diamonds are switched off at=0. The solid  a|ly negligible,g andg’ are the elastic and viscous molecular

symbols represent the solutions from the EL theory and the Opeﬂelds andx is the Lagrange multiplier imposed b)?—l
symbols represent those from the generalized formulation. It is seen |

that after aboutr=10"“r,, each solution from the generalized o andg are determined by the Frank free energy through

formulation merges with the corresponding EL solution for the
sameVy . d=—_"" 4

Tii a(‘?jnk) din, (AS)
dering with only a small rotation of the principal axes@f oF OF
As a result, we find the subsequent relaxation of the velocity - _ R, ﬁk_F_
fields to be much slower than that predicted by the EL an; a(dn;)
theory, as depicted in Fig. 4.

(A6)

The entropy source of the isothermal, dissipative processes is

given by
VI. CONCLUDING REMARKS

We have obtained the generalized hydrodynamic equa- Ti:j dr{?r,-’i&jvi—g’-h}- (A7)
tions based on the tensor order parameter. Numerical results

obtained for the backflow phenomena serve to make app
ent the new length and time scales inherent to our formuleui—he conservation of angular momentum relageso the an-
tion and to show qualitatively different dynamics in thin cells fiSymmetric part ofe’, and this fact leads to the expression
at high holding voltages. This could be important for the

simulations of twisted-nematic and super-twisted-nematic T§=f dr{'a_jliSAji —g'-N}, (A8)
cells. Further developments in taking into account more re-

alistic surface anchoring conditions are currently under way.

It is also interesting to take into account the flexoelectrchhereUu is the symmetric part ofrj; , A;i=3(djv;+dv))
effect which can be induced by either director distortion oriS the symmetric part of the velocny gradient tensor, &hd

order parameter variatior23]. =n— wXn is time-changing rate of the director with respect
to the background fluid with angular veloci=3VXVv.
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APPENDIX A: THE ERICKSEN-LESLIE THEORY

Based on the director description of alignment state, the —0i = v2nA; + yaN;, (A10)

Frank free energy density is given b
9y yisg y where the sixe; are the Leslie coefficients, withy;= a3

2\ 2 —ay and y,= az+ ar,= ag— as [22].
Fe=3K4(V-n)2+ %Kz( n-Vx n+F) +3K3(nX VX n)?,

(A1) APPENDIX B: COMPARISON OF EL THEORY
WITH THE GENERAL FORMULATION

whereK,, K,, andKj are the splay, twist, and bend elastic = We equate the LdG free energy with the Frank free en-
constants, respectively, aids the helical pitch, positive for ergy in the limit of Eq.(9). From the definitiong5) and
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(AB6), the vector molecular field is related to the tensor field
h by

3
ngTSo(nihij+nihji)- (B1)

Here the field-induced terms gnandh are included because
—(1/12m) €]Q;;QiE;j = — (1/8m) €5(n- E)?+ constant,  with
€a=S0€, . The equilibrium conditionh;; =\ &;; + €A is
thus equivalent tg; = 3Sy\n; as obtained by minimizing the
Frank free energy with )\ being the Lagrange multiplier
(due ton?=1). The distortion stres&ﬂz—HjaBQaﬁli is
equal to a'ﬂ with %So(njnk” + nijji) = (9F|: /&ni’k . The
field-induced stressas’ and o' are the same in E@6) with

€ expressed in terms @ and n, respectively. As for the
viscous forcesg’ is related toh’ by

! 3SO ’ !
ngT(nihij"‘nihji), (B2

which is of the same form as E¢B1). Equation(B2) and

Nij=3Sy(niN;+Nin;)/2 yields the same orientational en-

tropy production equatio; \;;=gyN,. From Eqgs.(B1),
(B2) and 2n;Q;;=3Sen;+3Spn;n;n;, we see the vectorial

Oseen equatioitAd) can be constructed from the tensorial

Eq. (3) with I=2JS] andX =3SpA + 335n;n;. =3I is
also obtained from the energy relatiérhﬁzzéJ'Qﬁ- or the
angular momentum relation I(nxh)izeiij(Qm'Qkﬂ

+QMJQMk). o’ and ¢’ are required to be identical in the
limit of Eq. (9) since they both serve in the same dynamic

equationpi;iz&j aji . This fact, combined with EqB2), can

a,=9S3B,/4,
ay=3Syul4—9S5u1/4,
a3=3Syul4+9S3 1114,
a4= Ba—So(Bs+ Bs)/2, (B3)
a5=3SyB5/2=3Sp(Bs+ B~ 12)/4,

ag=3SyB6/2=3Sy(Bs+ Bet+ 12)/4,

which give y;=a3—a, and y,= ag— as with the Parodi
relationaz+ ar,= ag— as. The six Leslie coefficients linked
by the Parodi relation can be used to completely determine
the value of six viscosity coefficient8,, B4, Bs, Bs, #1,
and u, linked by Bg— B5= u», providedS, is known. Note
that other terms in higher orders Qf; can be added to the
expansions oiri’jS andhj; in Egs.(20) and(21). However,
additional viscosity coefficients would have to be introduced
[14,15, and they can not be determined by the Leslie coef-
ficients. In summary, our formulation can be reduced to the
EL theory with the relationgB1), (B2), 0“=0¢", o'=0",

and o' =0’ established in the limit of homogeneous,
uniaxial ordering with uniforr5=5;.

APPENDIX C: EXPLICIT EXPRESSIONS

For planar fluid motiong;=0), we only need to usej,
andoj,. From Eq.(7), we have

031= B1Q31Q AL T BaAz1+ BsQs, A1+ BeQ1,A Lz
+ 5 woNg1— 11Q3, N1+ 1Q1,N 3,

3= B1Q32Q AT BaAsot BsQs,A 2+ BeQ2uA s

be used to establish the relation between the Leslie coeffi- + %M2N32_M1Q3#N#2+M1Q2#NM3_ (C1)

cients and the viscosity coefficients definedah and h'.
From Egs.(8) and (A10), we get y;=3Su; and v,
=$Sou,. Equatings; with o; yields

Introducing the coefficientd),; and V,; with o3=Uq;
+ Vi (k=1,2,i=1,2,3,4,5, and=1,2), we have

Up=—2u10s5, Upp=—m10s, Uig=— 10z, U= 103, Ugs=u1(20:+0p) + 3 po,

Vi1=B105+ 5 (Ba— Bs(U1+ ) + Bed) + § wa(201+02) + 5 11(03+ 05+ 405+ (20, +0,)?),

V1o=B10s05+ 5 BelaT 7 m203+ 5 w1(dals+ (1 +d2)03),

Upn=—m10s, Uxp=—2u10s, Uz=—p10s, Up=p(d1+202)+ 3 2,  Uzs= 403,

V1= B10s0s+ 5 Bela+ 7 malz+ 3 #1(0sabs+ (A1 +02)03),

Vo= B105+ 3 (Ba— Bs(A1+02) + BeU2) + T ma(ds+202) + 5 ma(a5+ 405+ 5+ (14 202)2). (C2

Hereqi=&tqi andvj’zazvj . The expressions fok,, are relatively simple. From Ed8), we have
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—f1=—hi+he=2u1(01 = 010s) + 1(d2—v50a),
—f5=—hjyt hig=2u1(02—v50s) + £1(d1—v10s5),
—f3=—hy— hélzl’«l(z%_Uiqu_Ué%), (C3
—f4=—hjg=h=3 uav5+ u1(204+vids+v5(dy+20y)),
—f5=—hg—Nis=3 wovi+ #1205+ 0503+ v1(2q:+ Q).
Introducing another set of coefficientg; andv,; with f&zukiqurvkjvj’ (k,i=1,2,3,4,5 and =1,2), we have
Upp=2uq, Up=p1, Uz=0, Up=0, u;s=0, v1;=—2u10s5, v12=— 104,
Upt=p1, Upp=2u1, Up=0, Ux%=0, Ux=0, vyn=—wni0s, v2=—24110s,
U33=0, U3=0, Uzz=2uq, Ug=0, U3s=0, vz=—w10s, Uzp=— 105, (CH
Ur=0, Up=0, Ugp=0, Ugp=2u5, Ugp=0, vg=m1G3, Ug4=73 sot+pi(ds+20y),
Us;3=0, Us=0, Usz=0, Us=0, Uss=2u1, Us1=3uptpu1(2011+02), vs=p10s.
Using the free energy expression and the definitions;oind f,, we obtain

f1=—a(2q;+d2) +38(A+ 95— a5~ (A1 +U2) D) — 4¥(20:+ )R+ L1 (207 + ) + Lo(q] +a3) +27L 1 (493)/ P

e V2
_E—z(fd )2!
633 d2/633
0
fo=— a(d1+20,) +3B(a5+ 05— 05— (01 +02)?) — 4y(ds+ 202) R+ L4(0f + 205) + L (g7 + o
e V2
+2mLq(— 4q3)/P [ e a—l
633( dZ/633)
f3=—2a03+68(0:103+ 0203+ d405) — 8YQ3R+2L 103+ 27L1(—4q;+4q5)/P, (CH

f4=—2a0,+6B(q204+ 305~ da(d1+02)) —8yaqsR+2L 10+ Loay + 27L 4 (— 495)/P,

fs=—2a05+68(q105+ 304~ ds(d:t02))—8yasR+2L 105+ Loq5+27L1(404)/P,

with qk—ﬁzqk and R=Q;;Q;;= as+q3+(q:+9,)?+20g5  the Leslie viscosity coefficients are taken from REf6],
+202+2q2. suitable  for  p-methoxybenzyliden@-(n-butyl)aniline
(MBBA). They are listed in Table |. Using EqB3),
the viscosity coefficients in Eq29) can be obtained. Other
) parameters areej=20, €, =5, d=100A, and P=2d.
APPENDIX D: MATERIAL PARAMETERS The voltage unit\H/,:=\/47-rK1/45a is 0.253 V. The pretilt
Here we give the numerical values of the various paramangle of substrate aIignment@g 8° and the boundary con-
eters used in our calculation. The material constants in thdition for Q is Q(O) Q(d) So(3ngng—1)/2 with ng
free energy expansion area=0.065 J/cmK, B = (cos,0,sindy).
=0.53 Jicm, C=0.98 Jicm, L=4.5x10"* J/cm, and

. X TABLE |. The viscosity coefficients.
L,/L1=1, suitable for 5CB[24]. The temperature i

=T\n— 4(TIN T*) The Frank elastic constants are given,, /4, 0.07808 ayla, —0.9315
by Ki=3S5(L1+35L2), Kp=3S0Ly, and K3=3S3(Ly  ay/a, —0.01435 a, 0.4598 cgs
+3L,), with Sy=B(3+ 33)/8C at temperaturel. Since 4 /a, 0.5565 aglay (ot as+as)lag

very few measured viscosity coefficients are available, here
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