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Generalized hydrodynamic equations for nematic liquid crystals
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We present a formulation of the nematic liquid crystal hydrodynamics based on the tensor order parameter,
with the spatial variations of both the director and the scalar~uniaxial and biaxial! order parameters explicitly
taken into account. New length and time scales are shown to arise that can be important for the switching
dynamics of thin cells subject to large external fields. The Ericksen-Leslie theory is shown to be a special limit
of our formulation.@S1063-651X~98!13712-1#

PACS number~s!: 61.30.2v, 83.70.Jr
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I. INTRODUCTION

Nematic liquid crystals~NLC’s! are at the same time
similar and different from ordinary fluids. They are simil
because both have no translational long-range order for
molecules. In addition, nematic liquid crystals possess
static shear modulus and can therefore flow like a flu
However, NLC’s have long-range orientational order, wh
gives rise to many of the special optical properties which
the basis of liquid crystal displays. The existence of the o
entational order means that locally, the alignment of
NLC’s is characterized by a directorn, the local axis of
uniaxial orientational order. Based on symmetry and ela
energy considerations, a continuum elastic theory of NL
has been developed by Oseen@1#, Zocher@2#, and Frank@3#.
The incorporation of the orientational degree of freedom
the hydrodynamics of NLC’s was subsequently developed
Ericksen@4# and Leslie@5#. They formulated the general con
servation laws of fluid mechanics for NLC’s and derived t
hydrodynamic equations governing the time evolution of
director fieldn(r ) and the velocity fieldv(r ). The Ericksen-
Leslie ~EL! theory has been widely and successfully used
explaining various dynamic properties of thermotrop
NLC’s.

In addition to the directorn, which gives the local axis o
uniaxial symmetry, the NLC’s are also characterized by
degree of local orientational orderS(r ). By noticing that
NLC’s do not distinguish the head and tail of the directorn,
and by taking into account the degree of orientational or
S(r ), de Gennes@6# has shown that the order parameter
NLC’s is a second rank traceless symmetric tensorQJ . While
the continuum elastic theory based on the director desc
tion of NLC is sufficient for many field-induced liquid crys
tal behaviors, it has been shown that the consideration
substrate-nematic interaction and/or interaction with stro
electric or magnetic field would require the more compl
theoretical framework based on the tensor order param
The Landau–de Gennes~LdG! @7# theory has been instru
mental in explaining and predicting various static pheno
ena, such as surface wetting@8#, surface-induced bulk align
ment@9,10#, and defect core structure@11–13#, all involving
the fast spatial variations of liquid crystalline order~LCO!, a
term used here to denote bothn andS as expressed throug
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the tensor order parameterQJ . Recently, it has been observe
that the polyimide-coated substrates can induce a boun
layer of strong biaxial character, describable only throu
the tensor order parameter@9#. In addition, the prediction of
the bulk orientational order through the LdG theory sho
good agreement with the experiment. The use of a ten
order parameter is therefore not only necessary, but also
ficiently accurate.

The purpose of this work is to explore the role of LCO,
expressed by the tensor order parameterQJ , in hydrodynamic
processes. We adopt the general framework developed
Ericksen and Leslie, meanwhile applying the LdG free e
ergy to present a hydrodynamics formulation that can
used to study the dynamic behavior. We identify new len
and time scales associated with the spatially and tempor
varying LCO in generic hydrodynamic processes. Illustrat
numerical results are given. It is shown that the EL theo
corresponds to the long-range, slow-motion limit of the ge
eral formulation. We note that the EL theory has been rew
ten in the tensorial context but withS(r ) treated as a constan
@14,15#. Our formulation should be distinguished from su
treatment since we take into account the variations of b
S(r ) and n(r ), as well as the coupling between the tw
and/or the biaxial order.

II. STATEMENT OF RESULTS

The LdG free energy density is given by@7#

FLdG5 1
2 ~aQi j

2 1L1Qi j ,k
2 1L2Qi j , jQik,k!

1
4p

P
L1e i jkQil ] jQkl2bQi j QjkQki1g~Qi j

2 !2.

~1!

Herea, L1 , L2 , b, g, andP are phenomenological materia
constants,e i jk is the Levi-Civita symbol, the indicesi , j ,k
run from 1 to 3, summation over repeated indices is impli
and the comma in the subscript means derivative with
spect to the spatial coordinate that follows. We consider
compressible NLC’s obeying]kvk50. The central results o
this work are as follows. The hydrodynamic equations
the flow and LCO are
7475 © 1998 The American Physical Society
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r
dv i

dt
5] j~2pd j i 1s j i

d 1s j i
f 1s j i8 !, ~2!

JQ̈i j 5hi j 1hi j8 2ld i j 2e i jklk , ~3!

Herer is the NLC density,p denotes the pressure,J is the
moment of inertial density, usually negligible,l andlk are
the Lagrange multipliers determined by requiring TrQJ50
and Qi j 5Qji , while d/dt is the total time derivative]/]t
1v•¹. The distortion stresssd and elastic molecular fieldh
are determined by the LdG free energy:

s j i
d 52

]FLdG

]~] jQab!
] iQab , ~4!

hi j 52
]FLdG

]Qi j
1]k

]FLdG

]~]kQi j !
. ~5!

In the presence of electric fieldE, there is a field-induced
free energy densityFf52(1/8p)D•E, whereD5 eJE is the
electric displacement field, andeJ5 2

3 ea
mQJ1 ēI is the dielec-

tric tensor withea
m being the maximum dielectric anisotrop

andē5Tr eJ/3. Here the sign in2(1/8p)D•E means thatFf
takes the electric field~or potential! as thermodynamical co
ordinate. The field-induced stresssf is given by

s j i
f 5

1

4p
D jEi2

1

8pS DkEk2rEmEn

]emn

]r D d j i , ~6!

and h is reexpressed by adding the field-induced molecu
field (1/12p)ea

mEiEj to the right-hand side~RHS! of Eq. ~5!.
The viscous stresss8 and viscous molecular fieldh8 are
given by

sab8 5b1QabQmnAmn1b4Aab1b5QamAmb1b6QbmAma

1 1
2 m2Nab2m1QamNmb1m1QbmNma , ~7!

2hab8 5 1
2 m2Aab1m1Nab , ~8!

where b1 , b4 , b5 , b6 , m1 , and m2 are viscosity coeffi-
cients withb62b55m2 , Aji 5

1
2 (] jv i1] iv j ) is the symmet-

ric part of the velocity gradient tensor, whileNj i 5]Qji /]t
1vk]kQji 2e j abvaQb i2e iabvaQj b is the time rate of
change ofQji with respect to the background fluid angul
velocity v5 1

2 ¹3v.
There are intrinsic length and time scales that eme

from the LdG free energy. We choose the length scaleD
5ALC/B2, where B53b/4, C59g/4, and L53L1/4
1L2/2, as the characterisitic length unit to describe the s
tial variations ofQji . Correspondingly, the time scale ist
5hD2/L where h is some representative viscosity coef
cient. For most NLC’s,D;50 Å andt;0.1 ms. In addi-
tion to these intrinsic scales, there are also the length
time scales that arise from external imposed parameters,
as those in the EL theory. Consider a liquid crystal cell
thicknessd with parallel, uniform substrates imposing fixe
surface alignment conditions. The EL theory givesd as the
length scale andt0;hd2/K as the time scale, whereK
;LS2 is a Frank elastic constant in the continuum theory.
r

e

a-

nd
ch
f

n

the presence of applied voltageV, the field-induced correla-
tion length is given byjE;A4pK/eaE2 (ea is the dielectric
anisotropy andE5V/d is the field strength! and the associ-
ated time scale becomestE;hjE

2/K. In our formulation, the
EL theory is recovered whenD!jE<d andt!tE<t0 , i.e.,
in the limit of slow spatial and temporal variations. In fac
the EL theory can be obtained from our formulation wh
Qi j is written as

Qi j ~r !5S0@3ni~r !nj~r !2d i j #/2, ~9!

i.e., the orientational order is treated as a frozen const
However, that means the dynamic behavior ofS(r ), and
those involving the coupled evolution ofS(r ) andn(r ), can-
not be described within the EL theory.

We have carried out numerical calculation for a cell
d;1 mm filled by a NLC of largeea;15, with homoge-
neous substrate alignment conditions. We first minimize
LdG free energy to obtain the equilibrium NLC configur
tion under a large holding voltage (;20 V). Biaxial order-
ing in the boundary layer is noted. The hydrodynamic eq
tions ~2! and~3! are then solved to show the backflow effe
@16,17# after the voltage is switched off. It is seen that t
large elastic energy stored in the biaxial boundary layers
sults in a very fast orientational relaxation close to the NL
substrate interfaces. Because of the coupling between
translational and orientational motions, a large flow field
induced. The length and time scalesD and t are clearly
manifest in the resulting dynamic behavior.

The paper is organized as follows. In Sec. III, the deriv
tion of the hydrodynamics equations, based on the ten
order parameter, is presented. In Sec. IV, the new length
time scales of our formulation are discussed, and the
theory is obtained as a limit of our equations. In Sec. V,
numerical results are given to illustrate the hydrodynam
effects of LCO in thin cells subject to strong fields. We co
clude in Sec. VI with a discussion of implications for futu
work.

III. EQUATIONS OF HYDRODYNAMICS

In this section we derive the hydrodynamic equations
NLC’s by using the LdG free energy to define the nondis
pative molecular field and stress. The viscous molecular fi
and stress are then introduced through the consideratio
entropy production in a dissipative flowing nematic. The tw
independent fluxes for friction are identified by using t
conservation of angular momentum, and explicit expressi
for the viscous forces are obtained, leading directly to E
~2! and~3!. Field-induced effects are included in the deriv
tion.

A. Free energy and hydrostatics

The LdG free energyFLdG5*FLdGdr is a functional of
Qi j (r ) andQi j ,k(r ). The NLC can be ‘‘virtually’’ distorted
by either a rotation of molecular alignment:Qi j (r )
→Qi j8 (r ), or a displacement while keeping its orientatio
fixed: r→r 85r1u(r ), Qi j (r )→Qi j8 (r 8)5Qi j (r ). The elas-
tic molecular fieldh, as defined by Eq.~5!, results directly
from the virtual orientational distortion. The equilibrium
state is given by the order parameter configuration that m
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mizes the free energy functional*dr FLdG . As QJ only has
five independent components, the optimal configuration
isfies hi j 5ld i j 1e i jklk , where the fourl and lk are
Lagrange multipliers due to the constraints TrQJ50 and
Qi j 5Qji . On the other hand, the distortion stresssd is de-
fined by dFLdG5*s j i

d ] jui dr . Here the change in free en
ergy is caused by a change ofQi j ,k : ]k8Qi j8 2]kQi j .
2]aQi j ]kua , anddFLdG is given by

dFLdG5E dr
]FLdG

]Qi j ,k
~2]aQi j ]kua!,

from which we obtain Eq.~4!. In the presence of an electri
field E, the total free energy density becomesf 5FLdG
1Ff , where the field-induced energy densityFf is given by
2 (1/8p) e i j EiEj . Accordingly, the molecular field be
comes

hji 5L j i 1]mPm j i 1
ea

m

12p
EjEi , ~10!

where L j i 52]FLdG /]Qji and Pm j i 5]FLdG /]Qji ,m . The
field-induced stresssf , defined bydFf5s j i

f ] jui , is conse-
quently given by Eq.~6! @18#.

The LdG free energy is invariant under a rigid rotation
the nematic. That is,dFLdG50 if ui(r )5e i jkdQ j r k , dQi j
5e iabdQaQb j1e j abdQaQib , wheredQ is a small rotation
angle.dFLdG can be expressed as

dQmLm50.

As dQm is arbitrary, we have

Lm5E dr$e j i ms j i
d 2L j i ~e j mkQki1e imkQjk!

1Pn j i ~e j mkQki,n1e imkQjk,n!%50, ~11!

which essentially expresses angular momentum conserva
of the system, and shows thatsd andh are not independent
Equation~11! can also take the form

E dr$e i jks jk
d 1]n@e i jk~Qj mPnkm1Qm jPnmk!#%

5E dr$e i jk@Qj m~Lkm1]nPnkm!1Qm j~Lmk1]nPnmk!#%

5E dr H e i jk~Qj mhkm1Qm jhmk!2
ea

m

12p
e i jk~Qj mEkEm

1Qm jEmEk!J ,

in which we replaceLab1]nPnab by hab2ea
mEaEb/12p

using Eq. ~10!. This leads to the term
*dr$2(ea

m/12p)e i jk(Qj mEkEm1Qm jEmEk)% explicitly de-
pending onE in the RHS of the above equation. Then usi
eJ5 2

3 ea
mQJ1 ēI for the dielectric tensor,

2(ea
m/12p)e i jk(Qj mEkEm1Qm jEmEk) is found to be equa

to 2(1/4p)e i jkD jEk , which is simply related tosf by
2(1/4p)e i jkD jEk52e i jks jk

f . Thus, Eq. ~11! can be ex-
pressed as
t-

f

on

E dr$e i jk~s jk
d 1s jk

f !1]n@e i jk~Qj mPnkm1Qm jPnmk!#%

5E dr $e i jk~Qj mhkm1Qm jhmk!%,

from which we obtain

E e i jk r jdSm~smk
d 1smk

f !1E e i jk~Qj mdSnPnkm

1Qm jdSnPnmk!

5E e i jk$r j]m~smk
d 1smk

f !1~Qj mhkm1Qm jhmk!%dr ,

~12!

by using e i jk(s jk
d 1s jk

f )5e i jk]m@r j (smk
d 1smk

f )#
2e i jk r j]m(smk

d 1smk
f ). HeredS is the vectorial surface ele

ment on the boundary. It is clearly seen that the body torq
are externally supplied by the surface torques. In Eq.~12!,
since the appearance of (s j i

d 1s j i
f ) is always in conjuction

with e i jk , which is totally antisymmetric, it follows that the
result will not be altered by replacings j i

d 1s j i
f by s j i

d 1s j i
f

2pd j i , since2pd j i is symmetric. However, in equilibrium
] j (2pd j i 1s j i

d 1s j i
f )50 and hi j 5ld i j 1e i jklk , therefore

the integrant in the RHS of Eq.~12! vanishes. That is, the
body torque equal to zero, consistent with the requiremen
angular momentum conservation.

B. Dissipative dynamics and entropy source

With sd, sf , andh defined from the free energy expre
sion, we are ready to write down the dynamic equations
introducing the viscous stresss8 and the viscous molecula
field h8 which are responsible for entropy production
flowing nematics. Knowledge of the viscous stress means
dynamical equation, expressed as conservation of linear
mentum, may be written as

d

dtE rv i dr5E dSj s j i , ~13!

where the total stresss j i 52pd j i 1s j i
d 1s j i

f 1s j i8 . The last
term,s j i8 , represents the viscous stress tensor, which is to
derived. The time evolution of LCO is governed by the a
gular momentum equation

d

dtE Je i jk~Qj mQ̇km1Qm j Q̇mk!dr

5E @Qj m~hkm1hkm8 !1Qm j~hmk1hmk8 !#dr , ~14!

where the viscous molecular fieldh8 is introduced as a fric-
tion force with respect to the rotational degree of freedo
also to be derived. The differential equations correspond
to Eqs.~13! and ~14! are Eqs.~2! and ~3! stated in Sec. II.
Equation~3! is actually the tensorial analogue of the vect
rial Oseen equation@see Eq.~A4! in Appendix A# of the EL
theory. That relation will be dicussed in Sec. IV and Appe
dix B.
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The entropy production in an isothermal flowing nema
is defined by the thermodynamic relation

Ḟ5Ẇ1Q̇2TṠ5Ẇ2TṠ,

whereS denotes entropy, andTṠ denotes the dissipative pa
of entropy production. Written out explicitly, we have

TṠ52
d

dtE ~ 1
2 rv21 1

2 JQ̇ab
2 1FLdG1Ff !

1E dSm~PmabQ̇ab1smnvn!, ~15!

where the first integral is the decreasing rate of the total
energy (2Ḟ) and the second integral is the rate of exter
work (Ẇ) done by the surface forces. Substituting the d
namic equations~2! and ~3! into Eq. ~15! yields

TṠ5E dr$s j i8 Aji 2hji8 Q̇ji %, ~16!

whereAji has been defined previously in relation to Eqs.~7!
and ~8!. In Eq. ~16!, while we have explicitly identifieds8
andh8, yet the two quantities are correlated through angu
momentum conservation. To make this clear, we note
the rate of change of angular momentum may be expre
as

E e i jk r jdSmsmk1E e i jk~Qa jdSmPmak1Qj adSmPmka!

5
d

dtE $e i jkrr jvk1e i jkJ~Qm j Q̇mk1Qj mQ̇km!%dr . ~17!

Using Eqs.~2! and~3!, we may express the RHS of Eq.~17!
as

E e i jk$r j]msmk1@Qj m~hkm1hkm8 !1Qm j~hmk1hmk8 !#%dr .

We thus see that the sum of body torques, given by]msm i
andh1h8, equals the sum of surface torques. However,
sum of body torques exerted by]m(sm i

d 1sm i
f ) and h must

equal to the sum of nondissipative surface torques, as st
by Eq. ~12!. Subtracting Eq.~12! from ~17!, we obtain

e i jk]m~r jsmk8 !5e i jk r j]usmk8 1e i jk~Qm jhmk8 1Qj mhkm8 !,
~18!

which simply means that the viscous body torques fr
]msm i8 and h8 are supplied by the surface torque fro
dSmsm i8 . Substituting Eq.~18! into ~16!, we obtain the en-
tropy production expression

TṠ5E dr$s j i8
sAji 2hji8Nj i %, ~19!

where s j i8
s is the symmetric part ofs j i8 . The two sets of

independent fluxesAi j andNi j are thus identified as define
previously in relation to Eqs.~7! and ~8!, and the laws of
friction can be explicitly expressed as
e
l
-

r
at
ed

e

ted

sab8s 5b1QabQmnAmn1b4Aab1 1
2 ~b51b6!~QamAmb

1QbmAma!1 1
2 m2Nab , ~20!

2hab8 5 1
2 m28Aab1m1Nab , ~21!

whereb1 , b4 , 1
2 (b51b6), m2 , m28 , andm1 are independen

viscosity coefficients. According to the Onsager theor
@19#, m25m28 . Here the expressions forsab8s and2hab8 keep
the lowest-order terms inQi j so as to avoid the definition o
a large number of viscosity coefficients. They can be rela
to the corresponding quantities in the EL formulation. This
elaborated in Sec. IV and Appendix B. Usingsab8 5sab8s

1 1
2 emabem i j s i j8 and Eq.~18!, we obtainsab8 as given by Eq.

~7!. With the explicit expressions obtained for all the stres
and molecular fields, the derivation of the nematodynam
equations is thus complete.

IV. DISCUSSION

A. Intrinsic length and time scales

The short-range, fast variations of LCO can be induced
surface interaction potentials, strong fields, and/or tight g
metric confinements. The characteristic distances assoc
with such variations are determined by the NLCs’ elas
correlation lengths, which can be defined fromFLdG . In Sec.
II we defineD as the characteristic length unit to describe t
spatial variations ofQji . Since the inertial effects are usual
negligible, the dynamic equations~2! and ~3! are essentially
the balance equations between elastic forces and vis
forces, and the intrinsic time scalet corresponding to the
NLCs’ length scaleD is determined by such viscoelast
effects. Sinceh,sd;L/D2 and h8,s8;h/t, setting L/D2

5h/t leads tot;hD2/L, where h denotes some typica
viscosity coefficient. Consider the NLC confined in a cell
thicknessd with applied voltageV. The EL theory defines
two other sets of length and time scales.~For a brief review
of the EL theory, see Appendix A.! The Frank free energy
densityFF , given by Eq.~A1! in Appendix A, leads to a
correlation length→` @20#, and the cell thicknessd becomes
the only length scale. According to the EL theory, the cor
sponding time scalet0 is determined by the balance betwe
g,s̃d;K/d2 and g8,s̃8;h/t0 . That meanst0;hd2/K. In
the presence of electric field applied perpendicular to
substrates,FF and the field-induced free energy densit
2(1/8p)ea(n•E)2 together lead to a finite correlation leng
jE;A4pKd2/eaV2 whereV is the applied voltage. The cor
responding time scaletE , determined by the balance be
tweeng,s̃d;K/jE

2 andg8,s̃8;h/tE , is thus;hjE
2/K.

We emphasize thatd,t0 andjE ,tE are determined by the
cell thickness and applied field while the new length a
time scalesD andt are intrinsic parameters that can only b
obtained by taking into account the elastic correlation
LCO. With L;1026 dyn, B;0.5 J/cm3, C;1.0 J/cm3,
and h;0.1 p ~for 5CB!, we have D;50 Å and t
;0.1 ms. For largeea;15 @4-n-pentyl-48-cyanobiphenyl
~5CB! has ea.13#, V;20 V and d;1 mm, the field-
induced correlation lengthjE;100 Å, which is comparable
to D. Such high voltages can induce the spatial variations
well as the time evolutions of LCO withD and t as the
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relevant length and time scales. However, for large thickn
d, low voltageV, and small dielectric anisotropyea , D is
much smaller thand andjE . In that limit, theS(r ) is effec-
tively a frozen degree of freedom that cannot be activa
Consequently, the director field suffices for the description
time-evolving alignment state, and our formulation equatio
are reduced to the EL theory. This is shown below with m
details.

B. Adiabatic S„r,t … and the Ericksen-Leslie theory

It is straightforward to reduce our formulation to the d
rector description by taking the limit expressed by Eq.~9!.
Here we focus on the role ofS in such limit. A detailed
comparison can be found in Appendix B.

We first restrict our discussion to the uniaxial case. Fr
Qi j 5S(3ninj2d i j )/2, FLdG is reduced to

F LdG
U 5a~T2T* !S22BS31CS41 3

4 ~L11 1
6 L2!@¹S#2

1 3
8 L2@n•¹S#21 3

2 L2S@¹•n#@n•¹S#

1 3
4 L2S@n3¹3n#•¹S1 9

4 S2$~L11 1
2 L2!@¹•n#2

1L1@n•¹3n#21~L11 1
2 L2!@n3¹3n#2%, ~22!

where a(T2T* )53a/4, T* is the supercooling tempera
ture, B53b/4, andC59g/4. Here the helical term is omit
ted for simplicity. In caseS5S0 with S0 being the uniaxial
order parameter that minimizesa(T2T* )S21BS31CS4,
the free energy is effectively a functional ofn„r … only, rep-
resented by the last three terms. The splay, twist, and b
distortions ofn„r … are expressed as in the Frank theory. T
Frank elastic constants, given byK15 9

2 S2(L11 1
2 L2), K2

5 9
2 S2L1 , andK35 9

2 S2(L11 1
2 L2), are predicted to be pro

portional toS2 @21#, which has been experimentally verifie
by measuring the temperature dependence ofKi andS.

The EL theory ignores both the spatial and temporal
pendence ofS(r ). This corresponds to Eq.~9! in which the
uniaxial orientational order parameterS is set equal toS0 .
To justify such an approximation, it is necessary to exam
the equationQi j (hi j 1hi j8 )50, obtained from Eq.~3! by ne-
glecting the inertial term. This is actually the molecular fie
balance equation for theS degree of freedom. To make th
clear, we first note from the definition ofhi j @Eq. ~5!# that

Qi j hi j 5SH 2
]F LdG

U

]S
1]k

]F LdG
U

]~]kS!J 2
3S

2

]F LdG
U

]~]kQi j !
]k~ninj !.

~23!

In the RHS of this equation, the second term is negligi
compared with the first term if the characteristic distancel n
over which the director variations take place is much lar
than D, the characteristic distance for the spatial variatio
of S. An estimate of order of magnitude shows that in t
RHS of Eq.~23!, the first terms is on the order ofL/D2 while
the second term is on the order ofL/D l n , with its ratio to the
first one beingD/ l n!1. Actually l n@D is just one of the
conditions for the EL theory to be recovered as we will s
below. Then, by dropping the]k(ninj ) term in Eq.~23! and
ss

d.
f
s
e

nd
e

-

e

e

r
s

e

using Ni j 5Ṡ(3ninj2d i j )/213S(niNj1njNi)/2 and Eq.
~21! for the definition of hi j8 , we obtain for Qi j hi j 5

2Qi j hi j8 the equation

2
]F LdG

U

]S
1]k

]F LdG
U

]~]kS!
5

3

2
m1Ṡ1

3

4
m2ninjAi j . ~24!

From Eq.~24!, it can be deduced that the slow spatial a
temporal variation ofn effectively makes itself the only dy
namic variable out of the originalQJ . To see this point, we
write Eq. ~24! in the dimensionless form

H 2
]

]S̄
1 ]̄k

]

]~ ]̄kS̄!
J ~F̄S1F̄nS!5

3

2
m̄1

d

d t̄
S̄1

3

4
m̄2ninj Āi j .

~25!

HereF̄S1F̄nS5F LdG
U /(B4/C3) is the dimensionless free en

ergy density,S̄5S/(B/C) is the scaled orientational orde
m̄15m1 /h and m̄25m2 /h are the dimensionless viscosit
coefficients, respectively, andD and t are chosen as the
length and time units such that]̄k5D]k , d/d t̄5t(d/dt),
and Āi j 5tAi j . F̄S and F̄nS are given by

F̄S5~ T̄1 1
4 !S̄22S̄31S̄41 3

4 ~ L̄11 1
6 L̄2!@¹̄S̄#21 3

8 L̄2@n•¹̄S̄#2,
~26!

and

F̄nS5 3
2 L̄2S̄@¹̄•n#@n•¹̄S̄#1 3

4 L̄2S̄@n3¹̄3n#•¹̄S̄

1 9
4 S̄2$~ L̄11 1

2 L̄2!@¹̄•n#21L̄1@n•¹̄3n#2

1~ L̄11 1
2 L̄2!@n3¹̄3n#2%, ~27!

whereT̄5aC(T2TIN)/B2 with the isotropic-nematic transi
tion temperatureTIN given byT* 1B2/4aC, L̄15L1 /L, and
L̄25L2 /L. F̄S is determined by the degree of orientation
order S and its spatial variation, whileF̄nS comes from the
coupling between]kn andS. Let l n denote the characteristi
distance over which the director variations take place. It f
lows that ¹̄•n and ¹̄3n are on the order ofD/ l n . The
slow spatial variation ofn is defined to bel n@D, thus
u¹̄•nu,u¹̄3nu→0. As a consequence,F̄nS is negligible as
compared toF̄S . Now lettn denote the time scale associat
with the dynamics ofn and the flow. It follows thatĀi j is on
the order oft/tn . The slowness of time evolution mean
tn@t, thus Āi j→0. By neglectingF̄nS and Āi j in Eq. ~25!,
we obtain

H 2
]

]S̄
1 ]̄k

]

]~ ]̄kS̄!
J F̄S5

3

2
m̄1

d

d t̄
S̄. ~28!

Thus the temporal variation ofS̄ is decoupled from the tem
poral variation ofn. In addition, we note that the equilibrium
solution of S̄ is given by the solution to the Euler-Lagrang
equation
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H 2
]

]S̄
1 ]̄k

]

]~ ]̄kS̄!
J F̄S50. ~29!

Thus Eq.~28! describes the temporal relaxation ofS̄ when it
is out of equilibrium. Moreover, since the response tim
scalet for S is much shorter than that forn, the S̄(r /D, t̄ )
solution may be approximately given by the instantane
optimal configuration, which minimizes the free ener
*d(r /D)F̄S@n(r /D, t̄ )#1*d(S/D2)U@n(r /D, t̄ )#, noted to
depend onn explicitly. Here *dSU is the substrate-LC in-
teraction potential. Through time-varyingn, the optimal so-
lution S̄b thus obtained depends ont̄ explicitly. That means
]S̄b /] t̄ is on the order oft/tn→0. Meanwhile,v in the
boundary layer is on the order ofD•]kv;D/tn and ¹S̄b

;D21, thus tv•¹S̄b;t/tn also tends to vanish. With
dS̄b /d t̄→0 justified, the instantaneous optimal configurati
S̄b , satisfying Eq.~29! but subject to the time-varyingn
configuration, is thus obtained as the approximate solutio
Eq. ~28! for the boundary layer affected by the substrate-
intercation.

Based on the above discussion, it is readily seen that
degree of orientational orderS, varying spatially in the
boundary layer but uniform in the bulk, only adiabatica
follows the slow temporal variation ofn. The flow field thus
induced is on the order ofD/tn , which is negligible com-
pared with then-induced fluid velocity; l n /tn . We con-
clude that in the regime ofD! l n andt!tn , the alignment
state can be descibed byn alone, andn andv can be chosen
as the two dynamic variables. This constitutes the basi
the EL theory, andl n ,tn may be identified withd,t0 and/or
jE ,tE . Through a more complete discussion based onQi j
5S(3ninj2d i j )/21P( l i l j2mimj )/2, with l, m, andn being
the principal axes ofQJ , it can be shown in a similar way tha
in the regime ofD! l n andt!tn , n is effectively the only
dynamic variable fromQJ .

V. NUMERICAL RESULTS

We have carried out numerical calculation for a thin c
subject to a high switching voltage in order to demonstr
the LCO hydrodynamic effects. The coordinate system
defined with thez axis being the substrate normal, and
quantities are functions of onlyz and t. We focus on the
in-plane motions withv350. The boundary condition is tha
the velocity componentsv1 and v2 must vanish at the sur
facesz50 andz5d (d is the cell thickness! and the surface
order parameters are fixed~strong anchoring!.

With Qi j 5Qi j (z) and E is in the z direction, we have
s31

d 5s32
d 50 ands31

f 5s32
f 50. Since the inertial terms ar

negligible, we obtain

]3s3i8 50, i 51,2, ~30a!

f k52 f k8 , k51,2,3,4,5, ~30b!

where f k are defined byf 15h112h33, f 25h222h33, f 3

5h121h21, f 45h231h23, and f 55h311h13, and f k8 are de-
fined similarly. Here we select five independent order para
s

of

he

of

l
e
is
l

-

eters q1[Q11, q2[Q22, q3[Q12, q4[Q23, and q5

[Q31, while f k and f k8 are the molecular fields conjugate
qk . Explicit expressions for all the quantities in Eq.~30! are
given in Appendix C. The seven coupled differential equ
tions in Eq. ~30! can be integrated to yield the solutio
v i(z,t) andqk(z,t) provided the initial configurationqk(z,0)
is given. Due to the neglect of inertial terms,v i(z,0) and

q̇k(z,0) are determined byqk(z,0). To determine the initial
configuration, which is assumed to be in static equilibriu
we use the condition off k50, i.e.,

S 2
]

]qk
1] i

]

]qk,i
D ~FLdG1Ff !50.

Dynamics is obtained by straightforward time integrati
from the initial configuration.

The cell thicknessd used in our computation is 100D, on
the order of 0.5 microns.ea is chosen to be 15, withe i
520 ande'55, typical for the LC’s of large dielectric an
isotropy. The voltage unit used here isVF5A4pK1 /ea, on
the order of the threshold voltage of the Fre´edericksz transi-
tion. ForK1;1026 dyn andea515, VF;0.3 V, we calcu-
late the temporally varying flow field in the cell right after
high holding voltageVH is switched off. The material con
stants and boundary conditions are given in Appendix
Strong anchoring condition for the homogeneous alignm
at the two substrates is assumed. The pretilt angle is set t
8° and the substrates are arranged to have parallel su
directors. The surface value ofS is fixed at S05B(3
1A33)/8C at temperatureT5TIN24(TIN2T* ). According
to the EL theory, switching offVH results in a fast rotation o
the directors close to the substrates as the large elastic
tortion energy in the boundary layers is suddenly relea
@16#. A large flow field is thus induced by the coupled ev
lution of n and v. This is known as the dynamic backflow
effect. In particular, the EL theory givestE;hjE

2/K1 ~here
jE5A4pK1d2/eaVH

2 ) as the time scale of the relaxation pr
cess right afterVH is switched off.

The calculation is performed forVH ranging from 10VF to
100VF ~for parameters suitable to 5CB,VF.0.25 V) . Note
that VFd5VHjE , thus jE approximately ranges from 10D
(VH510VF) to D (VH5100VF). First we want to show tha
our formulation does agree with the EL theory in the regim
of low voltages. This is achieved by examining the nume
cal results obtained forVH;10VF . Let vQ denote the time-
dependent velocity fields obtained from our generalized
drodynamic equations andvn denote that from the EL theory
In Fig. 1, it is seen that the initialvQ andvn possess similar
spatial variation but differ appreciably in magnitude. How
ever, the initial difference vanishes quickly asvQ approaches
vn in a very short relaxation time scalet. Subsequently,vQ
merges withvn and undergoes futher relaxation with the tim
scaletE . As the initial difference betweenvQ and vn lasts
only within a negligible time duration (t!tE), the two so-
lutions are thus equivalent and the EL theory is effectiv
applicable.



th
e

or
dy

i
es

o
d
ha
ut
ow

n
n
at
y
b-

or

EL
the
ally
r-

th
a

lid
n
de
he
io

tion

e
he
eral-

PRE 58 7481GENERALIZED HYDRODYNAMIC EQUATIONS FOR . . .
For VH high enough so thatjE is comparable toD, quali-
tative differences emerge between our formulation and
EL theory. First, we note that within the LdG theory, th
equilibrium LCO configuration~maintained by the holding
voltageVH) possesses strong biaxial character ifjE is on the
order ofD. With an initial state already beyond the direct
description, it is imperative to use the generalized hydro
namic equations to solve the time evolution problem. This
further justified by considering the dynamic time scal
SincetE is actually comparable to the intrinsic time scalet
if jE;D, the dynamic relaxation involves the coupled ev
lution of QJ and v from the very beginning. This is indee
confirmed by our numerical results. In Fig. 2, it is seen t
the initial vQ andvn still possess similar spatial variation b
again are appreciably different in their magnitudes. But n
the difference persists asvQ andvn evolve, respectively, with
the time scalest and tE , which are of the same order. I
addition, since]zv in the central part of the cell is crucial i
determining the relaxational behavior of the alignment st
@16,17#, the whole dynamic process predicted from our h
drodynamic equations differs qualitatively from that o

FIG. 1. ~a! Spatial and temporal variations ofv1(z,t) after the
holding voltageVH510VF is switched off att50. The solid lines
represent the solution from the generalized formulation and
open squares represent that from the EL theory. Both solutions
obtained for the time duration fromt50 to 231025t0 , with t0

5a4d2/K1 . The time interval between each two adjacent so
lines is 231026t0 . It is readily seen that the temporal variatio
depicted by the solid lines is fast and monotonic, exhibiting a
creasinguv1u magnitude everywhere. For the open squares, t
have similar spatial dependence but negligible temporal variat
~b! Same as~a! except forVH520VF .
e

-
s
.

-

t

e
-

tained within the EL theory. From Fig. 3, we see that f
VH>50VF(.13 V), the initial velocity increase~with VH)
is almost flat, in sharp contrast to that predicted by the
theory. This is due to the fact that the elastic distortion in
boundary layers is no longer characterized by the spati
rotating director. Instead, it exhibits predominant biaxial o

e
re

-
y
n.

FIG. 2. ~a! Initial velocity fields v1(z,t50) obtained from the
EL theory forVH550VF ~circles!, 75VF ~squares!, and 100VF ~dia-
monds!. ~b! Initial velocity fieldsv1(z,t50) obtained from the gen-
eralized formulation forVH550VF ~circles!, 75VF ~squares!, and
100VF ~diamonds!. Here the spatial dependence ofv1 is only de-
picted in the first half-space because of the symmetry rela
v1(z,t)52v1(d2z,t).

FIG. 3. Maximum initial velocity depicted as a function of th
switched offVH . Solid triangles represent the solutions from t
EL theory and the open triangles represent those from the gen
ized formulation.
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dering with only a small rotation of the principal axes ofQJ .
As a result, we find the subsequent relaxation of the velo
fields to be much slower than that predicted by the
theory, as depicted in Fig. 4.

VI. CONCLUDING REMARKS

We have obtained the generalized hydrodynamic eq
tions based on the tensor order parameter. Numerical re
obtained for the backflow phenomena serve to make ap
ent the new length and time scales inherent to our form
tion and to show qualitatively different dynamics in thin ce
at high holding voltages. This could be important for t
simulations of twisted-nematic and super-twisted-nem
cells. Further developments in taking into account more
alistic surface anchoring conditions are currently under w
It is also interesting to take into account the flexoelec
effect which can be induced by either director distortion
order parameter variation@23#.
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APPENDIX A: THE ERICKSEN-LESLIE THEORY

Based on the director description of alignment state,
Frank free energy density is given by

FF5 1
2 K1~¹•n!21 1

2 K2S n•¹3n1
2p

P D 2

1 1
2 K3~n3¹3n!2,

~A1!

whereK1 , K2 , andK3 are the splay, twist, and bend elas
constants, respectively, andP is the helical pitch, positive for

FIG. 4. Time variation of the central velocity gradient]v(z
5d/2,t) plotted as a function of time.VH550VF ~circles!, 75VF

~squares!, and 100VF ~diamonds! are switched off att50. The solid
symbols represent the solutions from the EL theory and the o
symbols represent those from the generalized formulation. It is s
that after abouttE51024t0 , each solution from the generalize
formulation merges with the corresponding EL solution for t
sameVH .
ty

a-
lts
r-
-

ic
-

y.
c
r

-

e

the right-handed helix. For incompressible nematics, the
sic equations of the EL theory read

] iv i50, ~A2!

r
dv i

dt
5] j~2pd j i 1s̃ j i

d 1s̃ j i
f 1s̃ j i8 !, ~A3!

I
d2ni

dt2
5gi1gi82l̃ni , ~A4!

wherer is the density constant,p is the pressure,s̃d, s̃f ,
and s̃8 are the stress tensors induced by elastic distortio
external electric and magnetic field, and viscosity effec
respectively,I is the inertial momentum density that is us
ally negligible,g andg8 are the elastic and viscous molecul
fields, andl̃ is the Lagrange multiplier imposed byn251.
s̃d andg are determined by the Frank free energy throug

s̃ j i
d 52

]FF

]~] jnk!
] ink , ~A5!

gi52
]FF

]ni
1]k

]FF

]~]kni !
. ~A6!

The entropy source of the isothermal, dissipative process
given by

TṠ5E dr $s̃ j i8 ] jv i2g8•ṅ%. ~A7!

The conservation of angular momentum relatesg8 to the an-
tisymmetric part ofs̃8, and this fact leads to the expressio

TṠ5E dr$s̃ j i8
sAji 2g8•N%, ~A8!

wheres̃ j i8
s is the symmetric part ofs̃ j i8 , Aji 5

1
2 (] jv i1] iv j )

is the symmetric part of the velocity gradient tensor, andN
5ṅ2v3n is time-changing rate of the director with respe
to the background fluid with angular velocityv5 1

2 ¹3v.
The independent fluxes contributing to the entropy prod
tion are thus identified. ForAji andNi , which are weak on
the molecular scale, the viscous stress and molecular field
linear functions of the fluxes:

s̃ j i8 5a1njninmnnAmn1a4Aji 1a5njnmAm i1a6ninmAm j

1a2njNi1a3niNj , ~A9!

2gi85g2njAji 1g1Ni , ~A10!

where the sixa i are the Leslie coefficients, withg15a3
2a2 andg25a31a25a62a5 @22#.

APPENDIX B: COMPARISON OF EL THEORY
WITH THE GENERAL FORMULATION

We equate the LdG free energy with the Frank free
ergy in the limit of Eq.~9!. From the definitions~5! and

n
en
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~A6!, the vector molecular fieldg is related to the tensor field
h by

gj5
3S0

2
~nihi j 1nihji !. ~B1!

Here the field-induced terms ing andh are included becaus
2(1/12p)ea

mQi j QiEj52(1/8p)ea(n•E)21constant, with
ea5S0ea

m . The equilibrium conditionhi j 5ld i j 1e i jklk is
thus equivalent togi53S0lni as obtained by minimizing the
Frank free energy with 3S0l being the Lagrange multiplie
~due to n251). The distortion stresss j i

d 52P j abQab,i is

equal to s̃ j i
d with 3

2 S0(njPki j1njPk j i)5]FF /]ni ,k . The

field-induced stressessf ands̃f are the same in Eq.~6! with
eJ expressed in terms ofQJ and n, respectively. As for the
viscous forces,g8 is related toh8 by

gj85
3S0

2
~nihi j8 1nihji8 !, ~B2!

which is of the same form as Eq.~B1!. Equation~B2! and
Ni j 53S0(niNj1Ninj )/2 yields the same orientational en
tropy production equationhi j8Ni j 5gk8Nk . From Eqs.~B1!,

~B2! and 2njQ̈i j 53S0n̈i13S0nj n̈jni , we see the vectoria
Oseen equation~A4! can be constructed from the tensor
Eq. ~3! with I 5 9

2 JS0
2 and l̃53S0l1 9

2 JS0
2nj n̈j . I 5 9

2 JS0
2 is

also obtained from the energy relation1
2 I n̈25 1

2 JQ̇i j
2 or the

angular momentum relation I (n3n̈) i5e i jkJ(Qj mQ̇km

1Qm j Q̇mk). s8 and s̃8 are required to be identical in th
limit of Eq. ~9! since they both serve in the same dynam
equationr v̇ i5] js j i . This fact, combined with Eq.~B2!, can
be used to establish the relation between the Leslie co
cients and the viscosity coefficients defined ins8 and h8.
From Eqs. ~8! and ~A10!, we get g15 9

2 S0
2m1 and g2

5 3
2 S0m2 . Equatings j i8 with s̃ j i8 yields
fi-

a159S0
2b1/4,

a253S0m2/429S0
2m1/4,

a353S0m2/419S0
2m1/4,

a45b42S0~b51b6!/2, ~B3!

a553S0b5/253S0~b51b62m2!/4,

a653S0b6/253S0~b51b61m2!/4,

which give g15a32a2 and g25a62a5 with the Parodi
relationa31a25a62a5 . The six Leslie coefficients linked
by the Parodi relation can be used to completely determ
the value of six viscosity coefficientsb1 , b4 , b5 , b6 , m1 ,
andm2 linked byb62b55m2 , providedS0 is known. Note
that other terms in higher orders ofQi j can be added to the
expansions ofs i j8

s and hi j8 in Eqs. ~20! and ~21!. However,
additional viscosity coefficients would have to be introduc
@14,15#, and they can not be determined by the Leslie co
ficients. In summary, our formulation can be reduced to
EL theory with the relations~B1!, ~B2!, sd5s̃d, sf5s̃f ,
and s85s̃8 established in the limit of homogeneou
uniaxial ordering with uniformS5S0 .

APPENDIX C: EXPLICIT EXPRESSIONS

For planar fluid motion (v350), we only need to uses318
ands328 . From Eq.~7!, we have

s318 5b1Q31QmnAmn1b4A311b5Q3mAm11b6Q1mAm3

1 1
2 m2N312m1Q3mNm11m1Q1mNm3 ,

s328 5b1Q32QmnAmn1b4A321b5Q3mAm21b6Q2mAm3

1 1
2 m2N322m1Q3mNm21m1Q2mNm3 . ~C1!

Introducing the coefficientsUki and Vki with s3k5Ukiq̇i

1Vk jv j8 (k51,2, i 51,2,3,4,5, andj 51,2), we have
U11522m1q5 , U1252m1q5 , U1352m1q4 , U145m1q3 , U155m1~2q11q2!1 1
2 m2 ,

V115b1q5
21 1

2 „b42b5~q11q2!1b6q1…1
1
4 m2~2q11q2!1 1

2 m1„q3
21q4

214q5
21~2q11q2!2

…,

V125b1q4q51 1
2 b6q31 1

4 m2q31 3
2 m1„q4q51~q11q2!q3…,

U2152m1q4 , U22522m1q4 , U2352m1q5 , U245m1~q112q2!1 1
2 m2 , U255m1q3 ,

V215b1q4q51 1
2 b6q31 1

4 m2q31 3
2 m1„q4q51~q11q2!q3…,

V225b1q4
21 1

2 „b42b5~q11q2!1b6q2…1
1
4 m2~q112q2!1 1

2 m1„q3
214q4

21q5
21~q112q2!2

…. ~C2!

Here q̇i5] tqi andv j8[]zv j . The expressions forf k8 are relatively simple. From Eq.~8!, we have



7484 PRE 58TIEZHENG QIAN AND PING SHENG
2 f 1852h118 1h338 52m1~ q̇12v18q5!1m1~ q̇22v28q4!,

2 f 2852h228 1h338 52m1~ q̇22v28q4!1m1~ q̇12v18q5!,

2 f 3852h128 2h218 5m1~2q̇32v18q42v28q5!, ~C3!

2 f 4852h238 2h328 5 1
2 m2v281m1„2q̇41v18q31v28~q112q2!…,

2 f 5852h318 2h138 5 1
2 m2v181m1„2q̇51v28q31v18~2q11q2!….

Introducing another set of coefficientsuki andvk j with f k85ukiq̇i1vk jv j8 (k,i 51,2,3,4,5 andj 51,2), we have

u1152m1 , u125m1 , u1350, u1450, u1550, v11522m1q5 , v1252m1q4 ,

u215m1 , u2252m1 , u2350, u2450, u2550, v2152m1q5 , v22522m1q4 ,

u3150, u3250, u3352m1 , u3450, u3550, v3152m1q4 , v3252m1q5 , ~C4!

u4150, u4250, u4350, u4452m1 , u4550, v415m1q3 , v425
1
2 m21m1~q112q2!,

u5150, u5250, u5350, u5450, u5552m1 , v515
1
2 m21m1~2q11q2!, v525m1q3 .

Using the free energy expression and the definitions ofhi j and f k , we obtain

f 152a~2q11q2!13b„q1
21q3

22q5
22~q11q2!2

…24g~2q11q2!R1L1~2q191q29!1L2~q191q29!12pL1~4q38!/P

2
ea

m

12p

V2

e33
2 S E

0

d

dz/e33D 2 ,

f 252a~q112q2!13b„q2
21q3

22q5
22~q11q2!2

…24g~q112q2!R1L1~q1912q29!1L2~q191q29!

12pL1~24q38!/P2
ea

m

12p

V2

e33
2 S E

0

d

dz/e33D 2 ,

f 3522aq316b~q1q31q2q31q4q5!28gq3R12L1q3912pL1~24q1814q28!/P, ~C5!

f 4522aq416b„q2q41q3q52q4~q11q2!…28gq4R12L1q491L2q4912pL1~24q58!/P,

f 5522aq516b„q1q51q3q42q5~q11q2!…28gq5R12L1q591L2q5912pL1~4q48!/P,
m
th

en

e

r

-

with qk9[]z
2qk and R5Qi j Qi j 5q1

21q2
21(q11q2)212q3

2

12q4
212q5

2 .

APPENDIX D: MATERIAL PARAMETERS

Here we give the numerical values of the various para
eters used in our calculation. The material constants in
free energy expansion area50.065 J/cm3 K, B
50.53 J/cm3, C50.98 J/cm3, L54.5310214 J/cm, and
L2 /L151, suitable for 5CB@24#. The temperature isT
5TIN24(TIN2T* ). The Frank elastic constants are giv
by K15 9

2 S0
2(L11 1

2 L2), K25 9
2 S0

2L1 , and K35 9
2 S0

2(L1

1 1
2 L2), with S05B(31A33)/8C at temperatureT. Since

very few measured viscosity coefficients are available, h
-
e

re

the Leslie viscosity coefficients are taken from Ref.@16#,
suitable for p-methoxybenzylidene-p-~n-butyl!aniline
~MBBA !. They are listed in Table I. Using Eq.~B3!,
the viscosity coefficients in Eq.~29! can be obtained. Othe
parameters aree i520, e'55, d5100D, and P52d.
The voltage unitVF5A4pK1 /ea is 0.253 V. The pretilt
angle of substrate alignment isus58° and the boundary con
dition for QJ is QJ (0)5QJ (d)5S0(3nsns2I )/2 with ns
5(cosus,0,sinus).

TABLE I. The viscosity coefficients.

a1 /a4 0.07808 a2 /a4 20.9315
a3 /a4 20.01435 a4 0.4598 cgs
a5 /a4 0.5565 a6 /a4 (a21a31a5)/a4
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